FICHE n°3 Echantillonnage

Cette fiche présente des propriétés (admises) et applications correspondant à des situations d'échantillonnage. Elle doit être étudiée en lien étroit avec les illustrations et travaux pratiques effectués en classe.

I. Fluctuation d'échantillonnage

<u>Définition</u>

- ¤ Dans le sens commun des sondages, un *échantillon* est une partie obtenue par prélèvement aléatoire dans une population.
- \mathbb{R} En statistique, on dit qu'un *échantillon de taille n* relève du *modèle de Bernoulli* s'il est obtenu par n répétitions indépendantes d'une même expérience aléatoire à deux issues (0 ou 1).
- ¤ Les distributions des fréquences observées varient d'un échantillon à l'autre. Ce phénomène est appelé *fluctuation d'échantillonnage*.

Propriété (admise)

Lorsque la taille de l'échantillon augmente, la fluctuation est plus faible et la distribution des fréquences tend à se rapprocher d'une distribution de fréquences théoriques.

Application Pour estimer la proportion p d'un caractère d'une population

Pour estimer la proportion p d'un caractère d'une population, on peut simuler des échantillons aléatoires de grande taille; la fréquence f du caractère dans ces échantillons tend vers p.

Remarque Voir la fiche 1 « Probabilités ».

II. Intervalle de fluctuation

Dans ce paragraphe, on considère un modèle de Bernoulli dont on connaît la probabilité *p* d'obtenir 1.

Propriété (admise)

Pour environ 95 % des échantillons de taille n relevant du modèle de Bernoulli avec une probabilité p d'obtenir 1, la fréquence d'apparition du 1 appartient à l'intervalle $\left[p-\frac{1}{\sqrt{n}},p+\frac{1}{\sqrt{n}}\right]$ (à condition que $n \ge 25$ et $0,2 \le p \le 0,8$).

Cet intervalle s'appelle l'intervalle de fluctuation au seuil de 95 %.

<u>Application</u> **Pour prendre une décision à partir d'un échantillon**

Pour déterminer si un échantillon est compatible avec un modèle donné, on détermine l'intervalle de fluctuation correspondant et on calcule la fréquence f d'apparition du 1 dans l'échantillon :

- $x = \sin f$ n'est pas dans l'intervalle de fluctuation, alors on peut rejeter l'hypothèse que l'échantillon soit compatible avec le modèle ;
- ¤ si **f** est dans l'intervalle de fluctuation, alors on ne peut pas rejeter l'hypothèse que l'échantillon soit compatible avec le modèle... Cela ne vaut pas dire qu'il est sûr d'être compatible!

III. Fourchette de sondage

Dans ce paragraphe, on considère un modèle de Bernoulli dont on ne connaît pas la probabilité *p* d'obtenir 1.

<u>Propriété</u> (admise)

Parmi tous les échantillons de taille n possibles, environ 95 % des intervalles associés $\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right]$ contiennent le nombre p.

On dit alors que la fourchette de sondage $\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right]$ est l'intervalle de confiance au niveau 0,95 de p.

Application Pour estimer une proportion inconnue à partir d'un échantillon

On considère une population dont la proportion p d'un caractère donné n'est pas connue. En réalisant un échantillon aléatoire de taille n dont on détermine la fréquence f du caractère étudié, on peut estimer la proportion p à l'aide de l'intervalle de confiance $\left[f - \frac{1}{\sqrt{n}}, f + \frac{1}{\sqrt{n}}\right]$ au niveau 0,95.